SUBSETS OF VERTICES OF THE SAME SIZE AND THE SAME MAXIMUM DISTANCE

MARIA AXENOVICH AND DOMINIK DÜRRSCHNABEL

ABSTRACT. For a connected graph G=(V,E) and a subset X of its vertices, let $d^*(X)=\max\{\mathrm{dist}_G(x,y):x,y\in X\}$ and let $h^*(G)$ be the largest k such that there are disjoint vertex subsets A and B of G, each of size k such that $d^*(A)=d^*(B)$. Let $h^*(n)=\min\{h^*(G):|V(G)|=n\}$. We prove that $h^*(n)=\lfloor (n+1)/3\rfloor$, for $n\geq 6$. This solves the homometric set problem restricted to the largest distance exactly. In addition we compare $h^*(G)$ with a respective function $h_{\mathrm{diam}}(G)$, where $d^*(A)$ is replaced with $\mathrm{diam}(G[A])$.

1. Introduction

For a subset X of vertices of a graph G, let $d^*(X) = \max\{\operatorname{dist}_G(x,y) : x,y \in X\}$, where dist_G is the distance in G. Two subsets of vertices $A, B \subseteq V$ are weakly homometric if |A| = |B|, $A \cap B = \emptyset$, and $d^*(A) = d^*(B)$. Let $h^*(G)$ be the largest k such that G has weakly homometric sets of size k each. Let $h^*(n)$ be the smallest value of $h^*(G)$ over all connected n-vertex graphs. Informally, any connected graph G on n vertices has two disjoint subsets of vertices of the same size at least $h^*(n)$ that have the same largest distance (in G) between their vertices.

The notion of weakly homometric sets originates from the notion of homometric sets introduced by Albertson et al. [1]. For a subset of vertices X, let d(X) be a multiset of pairwise distances between the vertices of X. Two disjoint sets of vertices A and B are called homometric, if d(A) = d(B). Let h(G) be the largest k such that G has two homometric sets of size k each. Let h(n) be the largest value of h(G) among all connected n-vertex graphs. The best known bounds on h(n) are as follows:

$$c\left(\frac{\log n}{\log\log n}\right)^2 \le h(n) \le n/4 - c'\log\log n,$$

for positive contants c, c', where the lower bound is due to Alon [2], and the upper one is due to Axenovich and Özkahya [3], both of the bounds are slight improvements of the original bounds by Albertson et al. [1]. There are much better bounds on h(G) known when G is a tree or when G has diameter 2, see Fulek and Mitrović [6] and Bollobás et al. [4], see also an earlier paper by Caro and Yuster [5]. Weakly homometric sets are concerned only with one, the largest, distance. In this note we find $h^*(n)$ exactly.

Theorem 1. For any
$$n \ge 6$$
, $h^*(n) = \lfloor (n+1)/3 \rfloor$.

Note that considering connected graphs in the definition of h^* is not an essential restriction. Indeed, if a graph G is not connected and has at least two components of size at least two each, then by taking ∞ as a distance between any two vertices

Date: July 30, 2017.

from different components, we see that $h^*(G) \ge \lfloor n/2 \rfloor$. Otherwise, G has two connected components, one of which is a single vertex. Thus by Theorem 1 applied to the larger component $h^*(G) \ge \lfloor n/3 \rfloor$.

When the distance is considered in a subgraph rather than in an original graph, we consider the following function that is of independent interest. For a graph G, $h_{\text{diam}}(G)$ is the largest integer k such that there are disjoint sets $A, B \subseteq V(G)$, each of size k and so that diam(G[A]) = diam(G[B]).

Theorem 2. Let G be an n-vertex graph, then $h_{\text{diam}}(G) \ge \lfloor (n+1)/3 \rfloor$. Moreover if $\text{diam}(G) \ge 4$ or diam(G) = 1 then $h_{\text{diam}}(G) = \lfloor n/2 \rfloor$.

In order to prove the main result, we consider an auxiliary coloring of the edges of a complete graph on the vertex set V = V(G) with colors $1, 2, \ldots, \operatorname{diam}(G)$ such that the color of xy is $\operatorname{dist}_G(x,y), \ x,y \in V$. The result follows from observations about the structure of the color classes. In fact, the proof allows for an algorithm determining large weakly homometric sets.

2. Proofs

Let, for a graph G and $X \subseteq V(G)$, $E_i(X) = \{xy : x, y \in X, \operatorname{dist}_G(x,y) = i\}$, i.e., E_i is a set of pairs at distance i in G. We say that $E_i(X)$ is good is it contains two disjoint pairs xy, x'y'. Note that if a non-empty $E_i(X)$ is not good, i.e., bad, it is a triangle or a star in X. Further observe that if $X = A \cup B$, where A and B are weakly homometric in G, then $E_i(X)$ is good, for $i = d^*(A)$. We say that we split a set X of vertices if we form two disjoint subsets of X of size $\lfloor |X|/2 \rfloor$. We denote $d(xy) = \operatorname{dist}_G(x,y), x,y \in V(G)$. We denote the edge set of a star with center x and leaves set X as S(x,X).

Lemma 3. Let G be a graph, $X \subseteq V(G)$, $i = d^*(X)$. If $E_i(X)$ is good or $d^*(X) \le 2$, then $h^*(G) \ge \lfloor (|X| - 1)/2 \rfloor$.

Proof. Assume first that $xy, x'y' \in E_i(X)$ are disjoint pairs of vertices and $i = d^*(X)$. Split X such that x, y are in one part and x', y' in another part. The resulting sets are weakly homometric sets. If $d^*(X) = 2$, then either $E_2(X)$ is good implying $h^*(G) \ge \lfloor |X|/2 \rfloor$ or non-edges form a star or a triangle, so deleting one vertex allows to split the remaining vertices of X in two sets each inducing a clique. Thus $h^*(G) \ge \lfloor (|X|-1)/2 \rfloor$ in this case. If $d^*(X) = 1$, then X induces a clique and $h^*(G) \ge \lfloor |X|/2 \rfloor$.

Proof of Theorem 1. First we shall show the lower bound on $h^*(n)$. Consider a connected graph G on n vertices. Let $d = \operatorname{diam}(G)$. If d = 2, the lower bound follows from the Lemma 3. So, we assume that $d \geq 3$. If $E_d(V)$ is good, then by Lemma 3 $h^*(G) \geq \lfloor (n-1)/2 \rfloor \geq \lfloor (n+1)/3 \rfloor$. If $E_d(V)$ is bad, it is either forms a triangle or a star.

Case 1 $E_d(V)$ forms a triangle xyz.

Let x' and y' be distinct vertices such that d(xx') = d(yy') = d - 1. Such x', y' could be chosen on a shortest xy-path. Let A and B be disjoint subsets of V - z, each of size $\lfloor (n+1)/3 \rfloor$, A containing x and x', B containing y and y'. We see that A and B are weakly homometric with maximum distance d-1.

Case 2 $E_d(V)$ forms a star.

Let $E_d(V) = S(x_0, Y)$, forming a star with center x_0 and leaves set Y. Let $x_d \in Y$, i.e., $d(x_0x_d) = d$. Consider a shortest x_0 - x_d path x_0, \ldots, x_d of length d.

Case 2.1 $|Y| \le n - \lfloor (n+1)/3 \rfloor - 1$.

Let A and B be disjoint sets such that $|A| = |B| = \lfloor (n+1)/3 \rfloor$, $A \subseteq V - Y - \{x_1\}$, A contains x_0, x_{d-1}, B contains x_1, x_d . Then A and B are weakly homometric with largest distance d-1.

Case 2.2 $|Y| \ge n - |(n+1)/3|$.

In particular $d \leq \lfloor (n+1)/3 \rfloor$. Let T be the breadth-first search tree with root x_0 . Let L_i 's be the layers of T, i.e., sets of vertices at distance i from x_0 , $i = 1, \ldots, d$. We have that $L_d = Y$, $L_0 = \{x_0\}$.

If T is a broom, i.e., all vertices of Y have a common neighbor, x_{d-1} in T, then $d^*(Y \cup \{x_{d-1}, x_{d-2}\}) = 2$ and by Lemma 3 $h^*(G) \ge \lfloor (|Y| + 2 - 1)/2 \rfloor \ge \lfloor (n - \lfloor (n+1)/3 \rfloor + 1)/2 \rfloor \ge \lfloor (n+1)/3 \rfloor$.

If T is not a broom, then some layer L_i , i < d, has more than one vertex and $d \le \lfloor (n+1)/3 \rfloor -1$. Let i be the smallest such index, i.e., $L_j = \{x_j\}$ for j < i. Then we see that $S(x_j, Y) \subseteq E_{d-j}(V)$, j < i. Let $V_j = V - \{x_0, \dots, x_{j-1}\}$, $j = 1, \dots, d$.

We consider $E_{d-1}(V_1), E_{d-2}(V_2), \ldots$ in order and show that each of these sets $E_j(V_j)$ is either good, allowing to use Lemma 3, or is a star with center x_j .

If for 0 < j < i, $S(x_j, Y) \neq E_{d-j}(V_j)$, then for smallest such j, $E_{d-j}(V_j)$ is good and $d^*(V_j) = d - j$, so by Lemma 3, $h^*(G) \geq \lfloor (n - j - 1)/2 \rfloor \geq \lfloor (n - (d-2) - 1)/2 \rfloor \geq \lfloor (n - \lfloor (n+1)/3 \rfloor + 2)/2 \rfloor \geq \lfloor (n+1)/3 \rfloor$. Thus, we have that $S(x_j, Y) = E_{d-j}(V_j)$, $j = 1, \ldots, i-1$. Consider $x_i, x_i' \in L_i$. We have that $d(x_ix_d) = d - i$, and the largest distance $d^*(V_i) = d - i$. Moreover, we claim that $d(x_i'y) = d - i$ for each $y \in Y$. Assume not and $d(x_i'y) < d - i$. Then $d(x_{i-1}y) < d - i + 1$, a contradiction. Thus $E_{d-i}(V_i)$ is good, and by Lemma 3, we have $h^*(G) \geq \lfloor (n-i)/2 \rfloor \geq \lfloor (n-\lfloor (n+1)/3 \rfloor + 1)/2 \rfloor \rfloor \geq \lfloor (n+1)/3 \rfloor$. In all these cases we have that $h^*(G) \geq \lfloor (n+1)/3 \rfloor$.

For the upper bound on $h^*(n)$, let $k = \lfloor (n+1)/3 \rfloor$. Consider a graph G that is a union of a clique K on n-k vertices and a path P on k+1 vertices such that K and P share exactly one vertex x that is an end-point of P. Consider two weakly homometric sets A and B in V(G) that have the largest possible size $h^*(G)$. If $(A \cup B) \subseteq V(K)$ then $h^*(G) \leq \lfloor (n-k)/2 \rfloor$. So, let's assume that $x' \in V(P) \cap (A \cup B)$ such that x' has the largest distance from x among the vertices of $A \cup B$. Assume further that $x' \in A$ and let i = d(x'x). Then $E_{i+1}(G)$ consists of all pairs x'y, $y \in V(K) - \{x\}$ and pairs containing vertices from P that are further from x as x' (if any). Since there are no such vertices in $A \cup B$, we see that E_{i+1} restricted to $A \cup B$ is a star, so $i+1 \neq d^*(A)$. Thus $A \subseteq V(P)$. If $d^*(A) > 1$ then $d^*(B) > 1$ and $B \setminus V(K) \neq \emptyset$. Thus at least one vertex in P is from B, so $|A| \leq |V(P)| - 1 = k$. If $d^*(A) = 1$, then |A| = 2. Thus $h^*(G) \leq \max\{\lfloor (n-k)/2 \rfloor, k, 2\} \leq \lfloor (n+1)/3 \rfloor$, for $n \geq 6$.

Proof of Theorem 2. Let G be a graph on n vertices and let $k = \lfloor (n+1)/3 \rfloor$. Assign a color $c(A) = \operatorname{diam}(G[A])$ to each k-element subset A of vertices of G. Then $c(A) \in \{1, 2, \ldots, k-1, \infty\}$. So, there are at most k colors used in this coloring. The coloring c corresponds to a coloring of vertices of the Kneser graph K(n,k). Since the chromatic number $\chi(K(n,k)) = n-2k+2$, see Lovász [7], and the number k of colors used is less than the chromatic number n-2k+2, we see

that c is not a proper coloring, so there are two disjoint sets A and B of the same color. Thus $h_{\text{diam}}(G) \geq k$. In particular, $h_{\text{diam}}(G) \geq \lfloor (n+1)/3 \rfloor$.

If $\operatorname{diam}(G)=1$ then G is a complete graph and the conclusion follows trivially. If $\operatorname{diam}(G)\geq 4$, we consider a vertex v that is at distance at least 4 to some other vertex. Consider a breadth first search tree with a root v. Let $V_i,\ i=0,1,2,\ldots,q$ be the layers of that tree, i.e., V_i is a set of vertices at distance i from $v,\ V_0=\{v\},\ q\geq 4$. We see that there are no edges between any two non-consecutive layers. We shall build two disjoint sets A and B such that G[A] and G[B] are both disconnected, i.e., have diameter ∞ .

If each layer has size less than n/2, put v and V_2 in A, put V_1 in B and split the remaining vertices (except maybe one) between A and B such that |A| = |B|. We see that v is not adjacent to any other vertex of A and we see that any vertex of V_2 is not adjacent to any vertex from $B \setminus V_2$.

If there is a layer, L, of size at least n/2 then the total number of vertices in all other layers is less than n/2. Consider the layers other than L, in order, and assign all vertices of each layer to the same set, A or B, in an alternating fashion. Split the vertices of L between A and B such that $|A| = |B| = \lfloor n/2 \rfloor$. More precisely, let $\{V_0, V_1, \ldots\} \setminus L = \{V_{i_1}, V_{i_2}, \ldots\}$, where $i_1 < i_2 < \cdots$. Put vertices of V_{i_k} in A if k is even, put vertices of V_{i_k} in B if k is odd. We see that there is always a full layer in A between some two vertices of B and there is a full layer of B between two vertices of A. So, G[A] and G[B] are disconnected.

3. Acknowledgements

The authors thank Torsten Ueckerdt for interesting discussions on the topic.

References

- [1] Albertson, M., Pach, J., Young, M., Disjoint homometric sets in graphs. Ars Mathematica Contemporanea, 4(1), 2011.
- [2] Alon, N., Problems and results in Extremal Combinatorics-III. Journal of Combinatorics, 7(2-3):233-256, 2016.
- [3] Axenovich, M. and Özkahya, L., On homometric sets in graphs. Electronic Notes in Discrete Mathematics, 38: 83–86, 2011.
- [4] Bollobás, B., Kittipassorn, T., Narayanan, B., Scott, A., Disjoint induced subgraphs of the same order and size. European Journal of Combinatorics, 49:153–166, 2015.
- [5] Caro, Y. and Yuster, R., Large disjoint subgraphs with the same order and size, European Journal of Combinatorics, 30, no. 4, 813–821, 2009.
- [6] Fulek, R. and Mitrović, S., Homometric sets in trees. European Journal of Combinatorics, 35:256-263, 2014.
- [7] Lovász, L., Kneser's conjecture, chromatic number, and homotopy, Journal of Combinatorial Theory, Series A, 25, no. 3, 319–324, 1978.

KARLSRUHER INSTITUT FÜR TECHNOLOGIE, KARLSRUHE, GERMANY E-mail address: maria.aksenovich@kit.edu

KARLSRUHER INSTITUT FÜR TECHNOLOGIE, KARLSRUHE, GERMANY