Graphs having small number of sizes on induced k-subgraphs

Maria Axenovich

 $\begin{array}{c} {\bf Department~of~Mathematics}\\ {\bf Iowa~State~University}\\ {\bf USA} \end{array}$

axenovic@math.iastate.edu

and

József Balogh*

Department of Mathematics
University of Illinois at Urbana-Champaign
USA
jobal@math.uiuc.edu

October 26, 2005

Abstract

Let G be a graph on n vertices, k, ℓ are integers such that $2\ell \leq k \leq n-2\ell, n$ is large enough. Let

 $\nu_k(G) = |\{|E(H)| : H \text{ is an induced subgraph of } G \text{ on } k \text{ vertices}\}|.$

We show that if $\nu_k(G) \leq \ell$ then G has a complete or an empty subgraph on at least $n - \ell + 1$ vertices, and a homogeneous set of order at least $n - 2\ell + 2$. These results are sharp.

1 Introduction

Let G be a graph on n vertices, let k be an integer, $1 \le k \le n$. A k-subgraph of G is an induced subgraph of order k. Let i(G) be a total number of isomorphism classes on induced subgraphs of G. Let

$$\nu_k(G) = |\{|E(H)| : H \text{ is a } k\text{-subgraph of } G\}|.$$

A trivial set is a subset of vertices in a graph inducing either an empty or a complete graph. The parameter i(G) was investigated in multiple papers in attempts to find the

^{*}Research was partly supported by NSF grant DMS-0302804.

maximum of i(G) over all graphs on n vertices, see [8], [9], and in research determining the structure of graphs G, for which i(G) is small. It has been shown in [2], [11] that graphs with "small" i(G) have a large trivial subset of vertices, in particular, if $\varepsilon < 10^{-21}$ and $i(G) \le \varepsilon n^2$ then $t(G) \ge (1 - 4\varepsilon)n$. When all k-subgraphs are isomorphic or simply have the same size, one can determine the structure of G as follows.

Proposition 1 ([1], [6]). Let G be a graph on n vertices such that $\nu_k(G) = 1$. If $2 \le k \le n-2$ then G is either a complete or an empty graph.

In this note, we continue investigating the structure of graphs G such that $\nu_k(G)$ is small. We show that it exhibits the same behavior, as the structure of graphs with small i(G). In particular, we show that G in this case must have a large trivial subset, where "large" is |V(G)| - c, for a constant $c = c(\nu_k(G))$. Moreover, we prove the existence of a large homogeneous set, i.e., a subset, X, of vertices such that for any $u, v \in X$, $N(u) \setminus \{v\} = N(v) \setminus \{u\}$. Our main result is the following.

Theorem 1. Let G be a graph on n vertices, let ℓ be a positive integer, and k be any integer satisfying $2\ell \le k \le n-2\ell$. Then for large enough n, if $\nu_k(G) \le \ell$ then G has a trivial vertex set of size at least $n-\ell+1$ and a homogeneous vertex set of size at least $n-2\ell+2$. These results are sharp.

The graph with $\ell-1$ edges and maximal degree 1 (or its complement) shows the bounds on the sizes of trivial and homogeneous sets are best possible. The n-vertex graph which is a disjoint union of $\lfloor n/2 \rfloor$ edges shows that the condition $2\ell \leq k \leq n-2\ell$ is necessary in order to obtain the above bounds on the sizes of trivial and homogeneous subsets of vertices. When $\ell=2$, Theorem 1 gives a precise structural result for large n. We prove the same result in the Appendix for all n, see the following.

Theorem 2. Let G be a graph on n vertices. Let k be an integer, $4 \le k \le n-4$, and let $\nu_k(G) = 2$. Then G is either a star, a disjoint union of an edge and n-2 vertices, or the complement of one of these graphs.

2 Proofs

We start with some definitions. For two disjoint sets A, B of vertices in a graph G, we denote by (A, B) a bipartite subgraph of G containing all the edges of G with one endpoint in A and another in B. We define a relation \sim on V(G), the vertices u, v are related, i.e., $u \sim v$ iff $N(u) - \{v\} = N(v) - \{u\}$. It is easy to check that \sim is an equivalence relation and the equivalence classes are the homogeneous sets. Note that a homogeneous set must span either a complete or an empty graph, furthermore if A, B are two homogeneous sets then (A, B) is either a complete or an empty bipartite graph. For two disjoint sets A, B, we write $A \sim B$ if (A, B) is a complete bipartite, $A \not\sim B$ if (A, B) is an empty bipartite graph. We say that a set of vertices A, and G[A] are trivial if G[A] is either a complete or an empty graph. Similarly, we say that (A, B) is trivial if it is either a complete or an empty bipartite graph. We say that the sets of vertices A and B are trivial of different types if one of them induces an empty graphs and the other one induces a complete graph. A q-skewchain is a bipartite

graph with parts $A = \{a_1, \ldots, a_q\}$ and B, such that $N(a_i) \subseteq N(a_{i+1})$, $i = 1, 2, \ldots, q-1$. A k-subset of vertices is a subset of size k. For all other definitions and notations, we refer the reader to [13].

Our main tool is the following reformulation of a result by Balogh, Bollobás and Weinreich [3] (for different variants of this theorem see [4] or [5]).

Theorem 3. Let t be a fixed integer. Then there is a function g(t) such that the following holds. Let G be a bipartite graph with partite sets A, B, |A| = |B| = n, where $n \ge g(t)$. Assume that the vertices in A all have distinct neighborhoods. Then G has either

- (i) an induced matching of size t or
- (ii) a bipartite complement of an induced matching of size t or
- (iii) an induced t-skewchain.

Let parameters n, k, ℓ satisfy the conditions of the Theorem 1. Let

$$f(\ell) = 2\ell R(g(R(8\ell^3))),$$

where R(n) = R(n, n) is the classical symmetric Ramsey number [12] and g(t) is the function from Theorem 3. The proof of the Theorem 1 will be based on three cases - when G has at least one "large" homogeneous set, when G has two "relatively large" homogeneous sets, and, finally, when G has many "small" distinct homogeneous sets. We shall consider corresponding Lemmas 1-3 and complete the proof based on them.

Lemma 1. Let graph G have a homogeneous set of size at least $n - f(\ell)$. If $\nu_k(G) = \ell$ then G has a homogeneous set of size at least $n - 2\ell + 2$ and a trivial set of size at least $n - \ell + 1$.

Proof. Let T_1 be a homogeneous set of size at least $n-f(\ell)$. We have that $V-T_1=A\cup B$ such that $T_1\sim A$ and $T_1\not\sim B$. Without loss of generality, let T_1 be an independent set. Let $B=B_1\cup B_2\cup B_3$ such that $G[B_1]$ does not have isolated vertices, each vertex of $B_2\subset B\setminus B_1$ is adjacent only to some but not all vertices of A and each vertex of B_3 is not adjacent to any other vertex of G, see Figure 2. Note that if $A=\emptyset$, then $B_2=B_3=\emptyset$, and G consists of edges induced by B_1 and isolated vertices. It is easy to see that $|B_1|\leq 2\ell-2$. Therefore there is a homogeneous set of vertices of size at least $n-2\ell+2$. Next, we assume that $A\neq\emptyset$. We shall use the following definition. For sets F,C,D of vertices, we say that the sets F_1,\ldots,F_t are obtained from $F=F_0$ by (C,D)-exchange in t-steps, for $t\leq s=\min\{|C\cup F|,|D\setminus F|\}$, if F_i is obtained from F_{i-1} by deleting a vertex from $F_{i-1}\cap C$ and adding a vertex from $D\setminus F_{i-1}$. If the number of steps t in an exchange is equal to s, we say that the exchange is longest.

Case 1.
$$n - 2f(\ell) \le k \le n - 2\ell$$
.

Let F_0 be a k-set containing all vertices of A, as many vertices from T_1 and as few vertices from $B_2 \cup B_3$ as possible. Since $n - |F_0| \ge 2\ell$, we can create $\min\{|B_3| + |B_2| + 1, 2\ell\}$ k-sets of distinct sizes on corresponding subgraphs by $(T_1, B_3 \cup B_2)$ -exchange performed on F_0 . Therefore $|B_2| + |B_3| \le \ell - 1$.

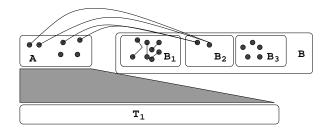


Figure 1: Sets T_1 , A and $B = B_1 \cup B_2 \cup B_3$.

Therefore, it is possible to choose F_1 , a k-set such that $A \cup B_1 \subseteq F_1$, $(B_2 \cup B_3) \cap F_1 = \emptyset$. First, perform longest (T_1, B_2) -exchange on F_1 . Let the resulting set be F_2 . Next perform (A, T_1) -exchange on F_2 in |A| - 1 steps. Let the last set obtained be F_3 . We have that $B_1 \cup B_2 \subseteq F_3$ and $F_3 \cap A = \{a\}$. Next perform longest (T_1, B_3) -exchange on F_3 . Finally, do $(\{a\}, T_1)$ -exchange on F_3 , followed by (B_1, T_1) -exchange producing as many distinct sizes on resulting subgraphs as possible. As a result of these exchanges, we have obtained k-subgraphs with nonincreasing sizes. The total number of such distinct sizes is at least $|B_2| + |A| - 1 + |B_3| + |B_1|/2 + 2$. Since this quantity is at most ℓ , we have that $|A| + |B_1| + |B_2| + |B_3| \le 2\ell - 2$.

Case 2. $2\ell \le k < n - 2f(\ell)$.

First we shall prove the following:

$$|B_1| + 2|A| \le 2\ell - 1. \tag{1}$$

Assume that (1) does not hold, i.e., $|A| > \ell - (|B_1| + 1)/2$. Let $F_0 \subseteq T_1$ be a set of size k. First construct sets from F_0 by (T_1, B_1) -exchange so that as many distinct sizes are obtained on corresponding k-subgraphs. Note, that we can build at least $\lceil (|B_1| + 1)/2 \rceil$ such sets. We can assume, without loss of generality, that the last subset obtained is F_1 , such that $B_1 \subseteq F_1$. Next, construct $|A| \ge \lfloor (2\ell - |B_1|)/2 \rfloor$ sets of distinct sizes on corresponding k-subgraphs from F_1 by (T_1, A) -exchange. We have all together at least $\lceil (|B_1| + 1)/2 \rceil + \lfloor (2\ell - |B_1|)/2 \rfloor > \ell$ distinct sizes, a contradiction. Thus (1) follows.

Next we create the sequence of k-subsets with decreasing sizes on corresponding subgraphs as follows. Since $|B_2| + |B_3| < f(\ell)$, using (1), we can find a k-set, F_0 , containing all of $A \cup B_1$ and none of the vertices from $B_2 \cup B_3$. Let $H_0 = F_0 \cap T_1$. Consider (T_1, B_2) -exchange in s steps, where

$$s = \min\{|T_1 \cap F_0| - 1, |B_2|\}.$$

This gives us s+1 sets F_0, F_1, \ldots, F_s with decreasing sizes on the corresponding k-subgraphs. Case $a. s = |T_1 \cap F_0| - 1$.

We have that F_0, F_1, \ldots, F_s induce $|H_0| = k - |A| - |B_1|$ k-subgraphs of distinct sizes. Let $F_{s+1} = (F_s \setminus A) \cup H_1, H_1 \subseteq T_1 \setminus F_s$. Create sets F_{s+2}, F_{s+3}, \ldots from F_{s+1} by (B_1, T_1) -exchange such that as many distinct sizes on corresponding subgraphs occur as possible. The number

of k-subgraphs with distinct sizes constructed so far is at least $(k - |B_1| - |A|) + |B_1|/2 = k - |B_1|/2 - |A| \ge 2\ell - \ell + 1/2 > \ell$, a contradiction. Note that in the last inequality we used is (1).

Case b. $s = |B_2|$.

We have that F_0, F_1, \ldots, F_s induce $|B_2| + 1$ k-subgraphs of distinct sizes. Note that $F_s = A \cup B_1 \cup B_2 \cup H_2$ for some $H_2 \subseteq T_1$. Let us perform a longest (T_1, B_3) -exchange on F_s . Let the last resulting set be F_p . Let $F_{p+1} = (F_p \setminus A) \cup H_3$, where $H_3 \subseteq T_1 \setminus F_p$. Finally, we perform a longest (B_1, T_1) -exchange on F_{p+1} .

If $|H_2| = |T_1 \cap F_s| \le |B_3|$, then we have obtained all together at least $|B_2| + 1 + |H_2| + |B_1|/2 + 1 = 2 + |B_2| + k - |A| - |B_1| - |B_2| + |B_1|/2 = 2 + k - |A| - |B_1|/2 > \ell$ distinct sizes (here the last inequality follows from (1)). A contradiction.

If $|T_1 \cap F_s| > |B_3|$, then we have obtained at least $|B_2| + 1 + |B_3| + 1 + |B_1|/2 \le \ell$ distinct sizes on corresponding subgraphs. Using (1) gives us that $|A| + |B_1| + |B_2| + |B_3| + 2 \le 2\ell$. Thus $|T_1| \ge n - 2\ell + 2$.

Now, we are prepared to prove that there is a trivial subset of size at least $n - \ell + 1$. We have that $V - T_1 = A \cup B$ such that $T_1 \sim A$ and $T_1 \not\sim B$ and, without loss of generality, T_1 is inducing an empty graph. Let |A| = a, |B| = b. We have that $a + b \ge \ell$ otherwise we are done. Let r be the number of components in G[B].

By taking a vertex from each component of G[B], we have, together with T_1 , a trivial set of size s,

$$s \ge (n - a - b) + r. \tag{2}$$

On the other hand, there are $\beta = b - r + 1$ subgraphs of distinct sizes in G[B], call the class of vertex sets of these subgraphs \mathcal{B} . Now, consider k-subgraphs F_1, \ldots, F_{β} spanned by sets from \mathcal{B} and subsets of T_1 . If $\beta \leq \ell$, consider the subgraphs G_1, G_2, \ldots , where $G_1 = F_{\beta}$ and G_{i+1} is spanned by $V(G_{i+1}) \setminus \{v\} \cup \{u\}$, where $v \in T_1$ and $u \in A$. Thus, we can create |A| = a k-subgraphs with new distinct sizes. The total number of distinct sizes on k-subgraphs is t,

$$t \ge b - r + 1 + a. \tag{3}$$

Now, from (2) and (3), and the fact $t \le \ell$, we have that $s \ge n - (a+b-r) \ge n - (t-1) \ge n - \ell + 1$.

Lemma 2. Let G have two distinct maximal homogeneous sets of sizes at least 2ℓ each. Then $\nu_k(G) > \ell$.

Proof. Let T_1, T_2 be distinct maximal homogeneous set, $|T_i| \geq 2\ell$, i = 1, 2. Consider sets $A_1 \subseteq T_1$, $A_2 \subseteq T_2$, such that $|A_i| = 2\ell$, i = 1, 2. Since T_1 and T_2 are distinct homogeneous sets, there is a vertex v such that, without loss of generality, $\{v\} \sim A_1$ and $\{v\} \not\sim A_2$ and $v \not\in A_1 \cup A_2$. Let $R_i \subseteq A_1$, $S_i \subseteq A_2$, $|R_i| = |S_i| = i$, $i = 0, 1, \ldots, 2\ell$. Let $X \subseteq V(G) - (A_1 \cup A_2 \cup \{v\})$, such that $|X| = k - 2\ell - 1$. Let $Y = X \cup \{v\}$. Note that such

set X exists since $|V - (A_1 \cup A_2)| = n - 4\ell \ge k - 2\ell$, for $k \le n - 2\ell$. Let $X_1 \subseteq X$, $X_2 \subseteq X$ such that $X_i \sim A_i$, $(X \setminus X_i) \not\sim A_i$, i = 1, 2. Let $|X_1| = r$, $|X_2| = s$.

(i) $G[A_1 \cup A_2]$ is trivial.

Without loss of generality, we may assume that $G[A_1 \cup A_2]$ is empty. Let

$$F_i = G[R_i \cup S_{2\ell-i} \cup X \cup \{v\}], \quad H_i = G[R_{i+1} \cup S_{2\ell-i} \cup X], \quad i = 0, \dots, 2\ell - 1.$$

Then

$$|E(F_i)| = ir + (2\ell - i)s + |E(G[X \cup \{v\}])| + i, \quad |E(H_i)| = (i+1)r + (2\ell - i)s + |E(G[X])|,$$

 $i=0,\ldots,2\ell-1$. Simplifying these expressions, we get $|E(F_i)|=i(r-s+1)+(2\ell s+|E(G[X\cup\{v\}])|)$ and $|E(H_i)|=i(r-s)+(r+2\ell s+|E(G[X])|)$. Either $r-s\neq 0$ or $r-s+1\neq 0$, therefore either the sets H_i , $i=0,1,\ldots,\ell$, or the sets F_i , $i=0,1,\ldots,\ell$, give $\ell+1$ distinct sizes on corresponding subgraphs, a contradiction.

(ii) A_1 , A_2 are trivial of different types.

Assume without loss of generality that A_1 induces a complete graph, A_2 induces an empty graph, and (A_1, A_2) is an empty bipartite graph. Let

$$F_i = G[R_i \cup S_{2\ell-i} \cup Y], \quad i = 0, \dots, 2\ell.$$

We have that

$$|E(F_i)| = (r+1)i + (2\ell - i)s + |E(G[Y])| + {i \choose 2}, \quad i = 0, \dots, 2\ell.$$

 $|E(F_i)|$ is a quadratic function of i, thus for $2\ell+1$ arguments, it takes at least $\ell+1$ different values, a contradiction.

(iii) A_1 , A_2 are trivial of the same types and (A_1, A_2) is trivial of a type different from the type of A_1 . Let

$$F_i = G[R_i \cup S_{2\ell-i} \cup Y], \quad i = 0, 1, \dots, 2\ell.$$

If A_1 and A_2 are empty then

$$|E(F_i)| = |E(G[Y])| + i(r+1) + s(2\ell - i) + i(2\ell - i), \quad i = 0, \dots, 2\ell.$$

If A_1 and A_2 are complete then

$$|E(F_i)| = |E(G[Y])| + {i \choose 2} + {2\ell - i \choose 2} + i(r+1) + (2\ell - i)s, \quad i = 0, \dots, 2\ell.$$

Each of these is a quadratic function of i, therefore gives at least $\ell+1$ different values for $i=0,1,\ldots,2\ell$.

Lemma 3. Let G have at least $f(\ell)/2\ell$ distinct maximal homogeneous sets. Then $\nu_k(G) > \ell$.

Proof. Let T_1, T_2, \ldots, T_m be distinct maximal homogeneous sets in $G, m \geq f(\ell)/2\ell$. Let $v_i \in T_i, i = 1, \ldots, m$. Consider the largest subset Q of $\{v_1, \ldots, v_m\}$ inducing a trivial graph. The Ramsey theorem guarantees that $|Q| \geq g(R(8\ell^3))$. Apply Theorem 3 to a bipartite subgraph G' of G with partite sets $Q, V \setminus Q$, and edges of G with one endpoint in Q and another in $V \setminus Q$. We have that there are subsets $Q' \subseteq Q$ and $P' \subseteq V - Q$, $|Q'| = |P'| = R(8\ell^3)$, such that $Q' \cup P'$ either induces in G' a matching or its bipartite complement or q-skewchain for q = |Q'|. By applying Ramsey theorem to G[P'], we can find a trivial subset P'' in P', $|P''| = 8\ell^3$. Let B = P'' and let A be the set of vertices in Q' corresponding to P''.

Let $A = \{u_1, \ldots, u_{8\ell^3}\}$ and $B = \{v_1, \ldots, v_{8\ell^3}\}$. By taking graph complements and relabeling the vertices, we have the following possible structure induced by A and B: A and B are trivial and either

- a) (A, B) is an induced matching $\{u_i\} \sim \{v_i\}, i = 1, \dots, 8\ell^3$ or
- b) (A, B) is an induced skew-chain with $\{u_i\} \sim \{v_i, v_{i+1}, \dots, v_{8\ell^3}\}, i = 1, \dots, 8\ell^3$.

If $k \leq 16\ell^3 - 2\ell - 1$ then we can easily find $\ell + 1$ k-subgraphs of $G[A \cup B]$ with distinct sizes. We can assume that $k \geq 16\ell^3 - 2\ell$. Let $X \subseteq V - A - B$ with $|X| = k - 16\ell^3 + 2\ell$. Let a_i be the number of neighbors of u_i in $X \cup B$ and let b_i be the number of neighbors of v_i in $X \cup A$, $i = 1, ..., 8\ell^3$.

By pigeonhole principle, we have one of the cases (i) or (ii) as follows.

(i) $|\{a_1,\ldots,a_{8\ell^3}\}| > 2\ell$, or $|\{b_1,\ldots,b_{8\ell^3}\}| > 2\ell$.

Assume, without loss of generality, that $a_1, \ldots, a_{2\ell+1}$ are all distinct integers. Let

$$F_j := X \cup A \cup B \setminus (\{v_1, \dots, v_{2\ell+1}\} \setminus \{v_j\}), \quad j = 1, \dots, 2\ell + 1.$$

The graphs induced by F_i s have k vertices and $2\ell + 1$ distinct sizes.

(ii) There is a subset of 2ℓ indices, without loss of generality, $\{1, 2, ..., 2\ell\}$, such that $a_1 = ... = a_{2\ell}$ and $b_1 = ... = b_{2\ell}$.

Let $M = \{v_1, u_1, v_2, u_2, \dots, v_{2\ell}, u_{2\ell}\}$. Now let

$$F_i = (X \cup A \cup B \setminus M) \cup \{u_1, \dots, u_{\ell}, v_1, \dots, v_i, v_{\ell+1}, \dots, v_{2\ell-i}\},\$$

 $j=1,\ldots,\ell-1$. Let $F_0=(X\cup A\cup B\setminus M)\cup\{u_1,\ldots,u_\ell,v_{\ell+1},\ldots,v_{2\ell}\}$, and $F_\ell=(X\cup A\cup B\setminus M)\cup\{u_1,\ldots,u_\ell,v_1,\ldots,v_\ell\}$. The graphs induced by the sets $F_j,\ j=0,\ldots,\ell$ have k vertices and have $\ell+1$ distinct sizes.

Proof of Theorem 1. Consider a graph G on n vertices with $\nu_k(G) \leq \ell$. Let T_1, T_2, \ldots, T_m be maximal homogeneous sets in G such that $|T_1| \geq |T_2| \geq \ldots \geq |T_m|$.

Case 1.
$$|T_1| > n - f(\ell)$$
.

In this case the conclusions of the Theorem follow immediately from Lemma 1.

Case 2. $|T_2| \ge 2\ell + 1$.

In this case we arrive at a contradiction using Lemma 2 with homogeneous sets T_1 and T_2 .

Case 3. $|T_1| \le n - f(\ell)$ and $|T_2| \le 2\ell$.

The conditions $|T_2 \cup T_3 \cup ... \cup T_m| \ge f(\ell)$ and $|T_i| \le 2\ell$ for i = 2,...,m imply that $m \ge f(\ell)/2\ell$. Therefore, we arrive at a contradiction using Lemma 3.

3 Appendix - Proof of Theorem 2

Let G be a graph on n vertices such that each k-subgraph has size i_1 or i_2 for some integers i_1, i_2 . We suppose that both values appear otherwise we are done by Proposition 1. Case 1. $i_1 = 0$ or $i_1 = \binom{k}{2}$.

We may assume, by taking a complement of G if necessary, that $i_1=0$. We have that some of the k-subgraphs are empty and others have size $i=i_2$. Consider the largest independent set S of size at least k. Let $v \notin S$, then $N(v) \cap S = S$ or $|N(v) \cap S| = 1$, otherwise it is easy to find two nonempty k-subgraphs with distinct sizes containing v and k-1 vertices from S. We see, in particular, that $i \leq k-1$, and, if $|N(v) \cap S| = 1$ for some v, then i=1. It is obvious that if i=1 and $k \geq 4$ then G must have exactly one edge. Thus, we may assume that for each $v \notin S$, $N(v) \cap S = S$. If there are two vertices $u, u' \notin S$ then consider u, u' and k-2 vertices of S. These k vertices induce a subgraph with at least 2(k-2) > k-1 edges, for $k \geq 4$, a contradiction. Thus there is exactly one vertex not in S and G is a star.

Case 2. $i_1, i_2 \notin \{0, {k \choose 2}\}$. Let $i_1 < i_2$ and $i_2 - i_1 = \ell, \ \ell \le k - 1$.

Case 2.1 There are vertices u, v, such that $|N(u) \setminus N(v)| \cap S| \geq 2$, for $S = V \setminus \{u, v\}$.

Let $Q=Q(u,v)=S\backslash N(u)\Delta N(v)$. Assume that $|(N(u)\backslash N(v))\cap S|\geq |(N(v)\backslash N(u))\cap S|$. Let us find subsets $U',U''\subseteq (N(u)\backslash N(v))\cap S,\ V'\subseteq (N(v)\backslash N(u))\cap S$ such that $|V'|+1\leq |U'|<|U''|$. Consider largest such subsets such that $|V'|+|U'|+1\leq k$. Then choose $Q',Q''\subseteq Q$ such that |Q'|+|V'|+|U'|+1=k and |Q''|+|V'|+|U''|+1=k. Note that these subsets can be chosen unless $Q=\emptyset$ and $(N(v)\backslash N(u))\cap S=\emptyset$. We have that the subgraphs induced by u,V',U',Q' and by v,V',U',Q' differ in size by t=|U'|-|V'|, t>0 and the subgraphs induced by u,V',U'',Q'' and by v,V',U'',Q'' differ in size by t'=|U''|-|V'|>t>0. Thus we have that $t_2-t_1=t$ and $t_2-t_1=t'$, a contradiction.

If $Q = \emptyset$ and $(N(v) \setminus N(u)) \cap S = \emptyset$ then $\nu_{k-1}(G[S]) = 1$, thus by Proposition 1, we have that S induces a trivial set. Thus G is one of the following: a) a star or its complement; b) a star and an isolated vertex; c) a complement of a star and an isolated vertex. Note that b) and c) are impossible since in that case $\nu_k(G) \geq 3$.

Case 2.2. For any two vertices $u, v \in V(G)$, if $S = V \setminus \{u, v\}$, then $|(N(u) \setminus N(v)) \cap S| \le 1$.

Then, in particular, it implies that the degrees of any two vertices differ by at most 1. Thus, $V(G) = V_d \cup V_{d+1}$ such that for each $v \in V_d$, deg(v) = d and for each $v \in V_{d+1}$, deg(v) = d + 1. Note also that

$$u \in V_d, \quad v \in V_{d+1}, \text{ then } N(u) \setminus \{v\} \subseteq N(v) \setminus \{u\}.$$
 (4)

Therefore, if $A \subseteq V_d$ induces a nontrivial connected graph in $G[V_d]$ then (A, V_{d+1}) forms a complete bipartite subgraph of G. Consider $A, B \subseteq V_d$ inducing two nontrivial components in $G[V_d]$. Let $a \in A, b \in B$. Then it is easy to see that $|N(a) \cap V_d| \le 1$ and $|N(b) \cap V_d| \le 1$. Therefore, either $G[V_d]$ is connected or each nontrivial connected component in $G[V_d]$ has maximum degree 1 and thus is an edge. Note that V_d cannot induce both edges and isolated vertices. Indeed, the degrees of vertices incident to edges in V_d are $|V_{d+1}| + 1$ and the degrees of vertices isolated in $G[V_d]$ are at most $|V_{d+1}|$ which is impossible since all vertices in V_d have the same degree d.

Subcase a. V_d induces an empty set in G.

Let $v \in V_d$, $u \in N(v)$. We have by (4) that each $w \in V_{d+1}$ is adjacent to u. Thus $d+1=deg(u) \geq |V_{d+1}|$. We also have that $d=deg(v) \leq |V_{d+1}|$. Therefore $d=|V_{d+1}|$ or $d=|V_{d+1}|-1$. In the first case we have that (V_d,V_{d+1}) form a complete bipartite subgraph and V_{d+1} must induce a complete graph by (4). Therefore, $|V_d|=2$ and $G=K_n\setminus e$, for an edge e. In the latter case, we again have that V_{d+1} induces a complete graph and (V_d,V_{d+1}) induces a complete bipartite graph with deleted stars of equal sizes centered in V_{d+1} and covering each vertex of V_d . If the number of these stars is ℓ and their sizes are k then $|V_d|=k\ell$, $d=n-k\ell-2$, d+1=n-k-1. Thus, $n-k\ell-1=n-k-1$, $k\ell=k$, and $\ell=1$. Therefore $G=E_n$, a contradiction.

Subcase b. V_d induces a matching.

In this case we have as before that V_{d+1} induces a complete graph and (V_d, V_{d+1}) forms a complete bipartite subgraph of G. Then $d = |V_{d+1}| + 1$, d + 1 = n - 1. Therefore, $|V_{d+1}| = n - 3$, $|V_d| = 3$, a contradiction since then V_d cannot induce a matching.

References

- [1] Akiyama, J., Exoo, G., Harary, F., The graphs with all induced subgraphs isomorphic, Bull. Malaysian Math. Soc. (2) 2 (1979) 43–44.
- [2] Alon, N., Bollobás, B., Graphs with a small number of distinct induced subgraphs, Graph theory and combinatorics (Cambridge, 1988). Discrete Math. **75** (1989) 23–30.
- [3] Balogh, J., Bollobás, B., Weinreich, D., A jump to the bell number for hereditary graph properties, Journal of Combinatorial Theory B 95 (2005) 29–48.
- [4] Balogh, J., Bollobás, B., Unavoidable traces of set systems, to appear in Combinatorica.
- [5] Balogh, J., Keevash, P., Sudakov, B., Disjoint representability of sets and their complements, Journal of Combinatorial Theory B 95 (2005) 12–28.
- [6] Bosák, J., Induced subgraphs, Finite and infinite sets, Vol. I, II (Eger, 1981), Colloq. Math. Soc. János Bolyai, 37, North-Holland, Amsterdam (1984) 109–118.
- [7] Maehara, H., On the number of induced subgraphs of a random graph, Discrete Math. **64** (1987) 309–312.
- [8] Korshunov, A. D., For what k in almost every n-vertex graph do there exist all noni-somorphic k-vertex subgraphs? (Russian) Diskretn. Anal. Issled. Oper. Ser. 1 8 (2001) 54–67.

- [9] Korshunov, A. D., The number of nonisomorphic subgraphs in an n-vertex graph, (Russian) Mat. Zametki **9** (1971) 263–273.
- [10] Shelah, S., Erdős and Rényi conjecture, J. Combin. Theory Ser. A 82 (1998) 179–185.
- [11] Erdős, P; Hajnal, A., On the number of distinct induced subgraphs of a graph, Graph theory and combinatorics (Cambridge, 1988). Discrete Math. 75 (1989) 145–154.
- [12] Ramsey, F. On a problem of formal logic, Proc. London Math. Soc. 30 (1927) 264–286.
- [13] D. B. West, Introduction to Graph Theory, Second Edition, xx+588 pages, (2000).